Working Papers on Distribution-Free Generalized Linear Models
نویسندگان
چکیده
منابع مشابه
Generalized linear models with unspecified reference distribution.
We propose a new class of semiparametric generalized linear models. As with existing models, these models are specified via a linear predictor and a link function for the mean of response Y as a function of predictors X. Here, however, the "baseline" distribution of Y at a given reference mean mu(0) is left unspecified and is estimated from the data. The response distribution when the mean diff...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملThe distribution of Pearson residuals in generalized linear models
In general, the distribution of residuals cannot be obtained explicitly. We give an asymptotic formula for the density of Pearson residuals in continuous generalized linear models corrected to order n−1, where n is the sample size. We define corrected Pearson residuals for these models that, to this order of approximation, have exactly the same distribution of the true Pearson residuals. Applic...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Science Research Network
سال: 2022
ISSN: ['1556-5068']
DOI: https://doi.org/10.2139/ssrn.4287032